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INTRODUCTION

This monograph develops a generalized thermal RC
network methodology suitable for generating transient
response numerical simulations of thermal systems.
Specific classes of boundary conditions are considered,
namely, steps and ramps of applied power, and steps and
ramps in temperature degree−of−freedom constraints. It
also discusses the implications of the form of the general
solutions to such networks with respect to the existence
of mathematically equivalent “non−grounded−capacitor”
thermal RC network models.

Glossary of Symbols

Aij cofactor or minor of a determinant

c constant of integration

Ci thermal capacitance of a variable
temperature node

i, ith, i = j,j, jth node index

kj constant representing generalized factor
in a Laplace transform

~G the thermal conductance matrix, and its
determinant det ~G

~G
i Cramerized thermal conductance matrix,

and its determinant det ~G
i

~G
−1 thermal impedance matrix

m “order” of power vector

n n + 1 (2n + 3) expressions relating to
number of variable nodes

Q(s) power vector incorporating only initial
temperatures, steps and ramps

qi power input at a node
Q Laplace transform of general power

vector

Rij, Rji thermal resistance between two nodes
(assumed bidirectional)

s Laplace transform complex variable, and
its square s2

Ti, Tj nodal temperatures
T Laplace transform of temperature vector

Ti Laplace transform of one nodal
temperature

�Ti Laplace transform of one nodal
temperature rise due to step heating

Tj

qi

Rij

Node Ti

Ci

Figure 1. Ti

Basic Node Model

Let a typical variable temperature node in a thermal
network be represented as shown in Figure 1, Ti. It consists
of a thermal capacitance Ci (tied to thermal “ground”), any
number of resistance links to other nodes Rij (whether those
nodes be at fixed temperatures or variable in their own
right), and a power input qi at the node. For illustration, we
have simply labeled one of the other nodes as Tj, but the idea
is that when we use a summation over resistance links, the
index j will denote each of the other nodes connected to the
node of interest (and not the node of interest itself). Then the
equation which describes the energy balance at node Ti is:

qi ��
Tj � Ti

Rij
� Ci

dTi
dt

(eq. 1)
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Transformation to s−plane
This differential equation can be converted to an algebraic

equation through the use of the Laplace transform. Bolded
symbols will represent the Laplace transformed quantities
corresponding to the original variables. Note also that one
aspect of the Laplace transform is that the initial value of the
temperature appears explicitly in the transformed equation.

qi ��
Tj � Ti

Rij
� sCiTi � CiTio (eq. 2)

This can now be rearranged as follows:

�Cis ��
var

i

Rij
�Ti ��

var

Ti
Rij

� qi ��
fixed

Tj

Rij
� CiTio (eq. 3)

where we have made a further distinction between variable
temperature nodes and fixed temperature nodes. In this case,
by fixed we do not mean so much that the temperature is
necessarily constant, but that it is specified (a constraint or
boundary condition), as opposed to being an unknown

variable in the model. Each temperature node in a particular
model will thus appear on either the left or right of the
equation − one or the other, depending on its function in the
particular model. For instance, in a thermal coldplate model
which recognizes heat loss to the environment as well as into
the coldplate itself, we will need both “chuck” and
“ambient” fixed−temperature nodes. Their temperatures
will be specified during the analysis, conceivably even
changing over time. It is again important to recognize that
the summations are always local to each variable
temperature node of the network, and represent whatever set
of links connect to that node. The “var” summations on the
left include only the links between the node of interest and
its adjacent variable nodes; the “fixed” summation on the
right includes only the links between the (variable) node of
interest and its adjacent fixed temperature nodes (if any).
Note that no summation ever includes an i = j term (i.e.,
there is no physical sense in having a resistor short itself out
at a node!). Also, we assume that links are completely
bidirectional, so there is no distinction between Rij and Rji.

Matrix Form
We can express the entire thermal network in one matrix equation, where each row and column of the matrix (and each

element of the vectors) represent the quantities associated with a different variable temperature node.

C1s ��
var

1

R1j
��� �

1

R1i
���

(eq. 4)

T1

...

�
1

R1i

...

...

Ti

...

Cis ��
var

1

Rij

=

q1 ��
fixed

Tj

R1j
� C1T1o

qi ��
fixed

Tj

Rij
� CiTio
...

...

If we define the following quantities:

G � (eq. 5)

C1s ��
var

1

R1j
��� �

1

R1i
���

...

�
1

R1i

...

Cis ��
var

1

Rij

~

(which matrix we note, in passing, is symmetric)

(eq. 6) =

q1 ��
fixed

Tj

R1j
� C1T1o

qi ��
fixed

Tj

Rij
� CiTio

...
...

T1

...

Ti

...

(eq. 7)and QT �

Then the entire network can be represented simply as:

G 	 T � Q (eq. 8)
~
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In ordinary application of this network model to either
experimental data fitting, or otherwise in prediction of
thermal performance of a system, we will generally specify
all the quantities of G~  and Q, and will seek solutions for T.

Thus T � G−1 	 Q (eq. 9)
~ which is easy enough to write

symbolically, but provides certain challenges in practice.

Boundary Conditions
Before we go any further into specific applications,

however, let us consider what sort of values are of interest
for Q. Obviously, constant power inputs and truly fixed
“reference” temperature nodes will be useful. If we limited
ourselves to these boundary conditions, we could solve
problems of any desired complexity in a piecewise fashion,
simulating time−varying power and constraint conditions
with square−edged constant waveforms (i.e. constant
“steps”) approximating the shapes of the actual conditions.
In so doing, we see that even though we might begin our first
step with all nodes at some common temperature (thus
momentarily eliminating the initial temperature constant
terms), once we had started the solution, the nodes would
move to different temperatures. The ending temperatures
from each completed step would then become the initial
temperature terms of the following step − so in general we
must retain these initial temperature terms, and in general

they will all be different from each other. We may also find
that square−edged power and temperature constraints are
too unrealistic for some situations, so let us permit them to
include a “ramp” characteristic (i.e., constant non−zero
slopes as needed) from the outset, and see if the extra
manipulations become too burdensome. Utilizing the
Laplace transforms of steps and ramps, we can write the ith

element of Q as follows:

Qi �
qi
s
�

qi

s2
�
� Tj

Rij

s
�
� Tj

Rij

s2
� CiTio

(eq. 10)
	

	

Where all quantities (except s) are now true constants, and
the “dotted” values are the slopes of the associated
quantities. Finally, collecting powers of s yields:

Q i � �qi ��
Tj

Rij
� 1

s2
��qi ��

Tj
Rij
� 1

s
� CiTio

(eq. 11)

	
	

It should now be clear that if we need to handle power
“ramps,” it costs us nothing in complexity to throw in
constrained−temperature node “ramps” as well. So with the
step and ramp restriction, our system can be expressed
entirely as polynomials in s, like this (where all the new
subscripted quantities are simply constants):

C1s � g11 ��� � g1i ���

(eq. 12)

T1

...

� g1i

...

...

Ti

...

Cis � gii

=

C1T1os2 � a1s � b1

...
...

CiTios2 � ais � bi

1

s2

Or, with an obvious definition of Q(s);

G 	 T �
1

s2
Q(s) (eq. 13)~

Solution Method
A brute−force solution of this system (using Cramer’s Rule)

now can be carried out to the point that Laplace transforms of
the nodal temperatures are expressed as:

Ti �
1

s2
det Gi

det G
(eq. 14)~

~
Where G~

i is the matrix obtained by substituting Q(s) for

the ith column of G~ . It should be evident that (det G~ ) ends

up being a polynomial in s of order n, where n is the number
of variable nodes in the network, and that (det G~

i) ends up

being a polynomial of order n + 1. With the additional s2

term in the denominator, standard techniques will yield a
fairly straightforward inverse transform of Ti into the time
domain, resulting in a solution Ti for each node consisting of
possibly a constant plus a linear term in time, and then

mainly exponentials (in negative powers of time, with time
constants derived from the roots of det G~ ).

Should there be repeated roots, the result will get
somewhat more complicated, nevertheless, the
methodology is standard and direct. We can code this
solution method into a computer program, and delay
conversion from symbolic to numerical analysis until the
last possible moment. A tool such as Theorist® or
Mathematica® can be used to generate the determinants in
full symbolic form, though if there are very many nodes in
the model, there may be dubious value in so doing
(especially since the equations will be unique for each
network topology analyzed). Other tools, such as
LabVIEW™, can be used to compute the determinants in a
quasi−symbolic form (i.e. identifying which elements of the
various matrices and vectors must be multiplied together
and added with cofactor multiplicands), and resorting to
numerical computations only whenever new polynomial
coefficients are needed. It is not clear which approach, if
either, has an advantage, since once the model consists of
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more than five nodes, there will never be a general,
closed−form solution for the roots of the denominator. In
either case, the determinants must be recomputed
(symbolically or quasi−symbolically) whenever the
topology changes; and in neither case do determinant
structures have to be recomputed due to changes in specific
network parameters. The question revolves more around the
format of what gets saved in between parameter changes
(and the associated costs in time and memory) − symbolic
expressions for the total coefficients of the final numerator
and denominator polynomials (each of which is a complex
combination of the entire set of R’s and C’s, all of which
appear multiple times in various permutations), or
quasi−symbolic representations of the determinants, with
potentially hundreds of individual equations in terms of
row−element references. The former likely trades off a much

lengthier derivation time of the symbolic coefficients (for a
possibly somewhat faster recomputation of their numerical
values), whereas the latter may be faster in generating the
quasi−symbolic determinants, at the expense of having more
numerical substitutions to be made into the actual
computation of the polynomial coefficients.

There is at least one special case of further interest here,
however. That is the “step heating” problem, where the
entire network is at a uniform−temperature thermal
equilibrium, and one or possibly more nodes are then
powered up, each with a constant power (unpowered nodes
being considered as constant zero power). We can refer all
temperatures to that uniform initial temperature, eliminate
the resulting zero terms (including the power and
temperature “ramp” values), and obtain:

C1s � g11 ��� � g1i ���

(eq. 15)

�T1

...

� g1i

...

...

�Ti

...

Cis � gii

=

q1

...
...

qi

1
s

Considering but one of the nodal solutions, it may now be
seen that the result for �Ti will be of the form:

�Ti �
1
s

�(qj 	 Aij)

det G
(eq. 16)

~

Rearranging slightly, we can also write this as:

�Ti ��qj 	
1
s

Aij

det G
(eq. 17)

~

Thus the Laplace transform of the solution for node i will
be a series of n polynomial fractions, one for each node in the
system. Each term has the same denominator, but each has
a different numerator according to which node it represents,
and each is multiplied by the power dissipation at that node.
One term will be present for each powered node, and the
solution for every node in the system (whether itself
powered or not) will have the same number of independent
terms. Powered nodes thus will have a so−called “self
heating” term, plus “interaction heating” terms for each of
the other powered nodes.

Implications for “Non−Grounded−Capacitor” Models
The main point in this derivation has been to show that an

arbitrary thermal RC−network model can have any of its
individual nodes’ solutions expressed as a combination of
terms individually proportional to the power inputs of each
associated heated node. Obviously a computer program can
be written to generate these solutions systematically. There
may, however, be an unanticipated secondary conclusion to
be drawn from this work. We have commonly referred to

physically−significant, grounded−capacitor models, versus
physically meaningless (but mathematically convenient)
non−grounded−capacitor models. (See AND8221/D and
AND8215/D for reference.) For simple single−input ladder
networks, it is often not evident that the equivalent
non−grounded models are nothing except mathematical
convenience; nor has it been clear to us that for
multiple−input grounded−capacitor models, there is even a
corresponding non−grounded network at all. This derivation
(of Equation 17) demonstrates that for the special case of
constant power heating from a uniform equilibrium, there is
at least a mathematically convenient equivalent to a
non−grounded network for each node, though it is still not
clear how one would construct such a network diagram.
(The implication is that there would have to be some node
whose temperature was simply the sum of the temperatures
of several otherwise independent nodes. Perhaps a SPICE
model would permit a variable to be declared that was just
such a sum, but the non−grounded capacitor circuit being
modeled could not be physically realized.) But because the
Aij are different for each node, each node in the
non−grounded model must be represented by a different
combination network. Further, it is not at all obvious that a
circuit so derived (and the node whose temperature was the
sum of the several components) would respond correctly to
other combinations of inputs (especially from non−uniform
starting temperatures, and certainly not different
combinations of power and temperature ramps). This can be
seen a little more clearly if we return to Equation 12 and
dissect the right−hand side:
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(eq. 18)

q1 �� Tj

R1j

...
...

�
1
s

G 	 T �

C1T1o

...

CiTio

...

qi ��
Tj

Rij

q1 �� Tj

R1j

...
...

�
1

s2

qi ��
Tj

Rij

~

	
	

	
	

If we choose to separate the temperature into three obvious components:

(eq. 19)T � To � Tstep � Tramp

(eq. 20)

q1 �� Tj

R1j

...
...

Tstep �
1
s

G−1 	To � G−1

C1T1o

...

CiTio

...

qi ��
Tj

Rij

(eq. 21)and

(eq. 22)

q1 �� Tj

R1j
...

...

Tramp �
1

s2
G−1 	

qi ��
Tj

Rij

and

~~

~

Where:

	
	

	
	

We see that the influences of initial conditions, constant
power (and constant temperature constraints), and ramps of
power (with ramps of constraint temperature) each add their
own independent contributions to the overall response of the
network. It can now be seen precisely how the different
contributions relate to each other − and it is not in simple
“proportion.” It is true (and perhaps a valuable insight), that
fixed−temperature nodes act just as if they represented fixed
power inputs. Likewise, power ramps and temperature
constraint ramps are completely equivalent in effect.
However, going back into the time domain, the relationship
between initial conditions and constant power would be that
the “power” contribution is related to the integral of the
“initial condition” contribution. To see this, first consider a
straightforward modification of Equation 17, which now
incorporates the fixed−temperature contribution to the
solution for any node i:

�Ti−step ����qj �� Tk
Rjk
� 	 1

s

Aij

det G
� (eq. 23)

~

And by similarity, we can simply write the other two
components of Ti:

�Ti−ramp ����qj �� Tk
Rjk
� 	 1

s2

Aij

det G
� (eq. 24)

~

	
	

�Tio ���CjTjo 	
Aij

det G
� (eq. 25)

~

Because the cofactors Aij depend only on G~  (and upon the

node for which we’re solving), what we have in all three
cases is the inner product of some constant vector (which
depends on whether we’re talking about the ramp, the step,
or the initial conditions), and a vector which depends only
on G~  (and is therefore fixed for whichever node is of

interest). To put it another way, all three contributions to the
overall solution can be written in the form:

�Ti 	 m �
1

sm��kj 	
Aij

det G
� (eq. 26)

~

For any specific node i, therefore, the time−domain solution
will be of the form:

�Ti(m) ���Kj(m)e
− t
� j� (eq. 27)

As we increase m, the solution will change like this:

�Ti(m � 1) � c ����jKj(m)e
�

t

� j
� (eq. 28)

Where c is a constant of integration. However, because the kj
are different for the different “orders” of the solution
contributions, one cannot actually derive the values of the
constants for one order, from a solution to another order. The
most important point here is that there is not a simple
relationship between the various contributions to the overall
solution, and the non−grounded networks which describe one
portion of the solution will therefore not work for the others.
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